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I. INTRODUCTION 

Studies of crack propagation and stability have developed in two main 

directions. One, related to materials science, concerns studies of the 

hierarchy of microdefects, their nucleation, interaction and development in 

association with propagation of a main crack. The microdefects are very 

different by nature depending on material structure and method of observa- 

tion, specifically the level of magnification chosen. Using a progressively 

finer scale of observation, a hierarchy of defects can be visualized. For 

instance, the various elements of damage in the vicinity of a fatigue crack 

in A S 1  301 stainless steel are shown in Fig. 1 [l]. A zone of a large 

plastic deformation surrounding the crack tip appears under 25X (Fig. la). 

The randomly oriented, "turbulent" field of lines representing the locali- 

zation of deformation can be distinctly observed under 5OOX (Fig. lb). 

Elements of discontinuity constituting an essential part of overall defor- 

mation can be identified under 20,OOOX (Fig. IC). Obviously, other details 

could be seen on intervening magnifications. Individual dislocations, the 

atomic structure etc can be observed under larger magnification. Which 

elements of this hierarchy of defects should be parametrized in order to be 

included into a quantitative model of a crack surrounded by damage? Ap- 

parently this question should not be addressed to the materials science 

only. The continuum mechanics, constituting the foundatiaon of the second 

main direction in studies of fracture propagation, is addressed as well. 

Conventionally in continuum mechanics a crack is considered as an ideal 

cut in an elastic, elasto-plastic or visco-elasto-plastic medium. The 

concept of crack-cut with associated surface energy was the first and a 

very important step in studies of brittle failure. It reflects some essen- 
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Fig. I 
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Morphology of t h e  c r a c k  l a y e r  on d i f f e r e n t  m a g n i f i c a t i o n s .  
a - Genera l  view of t h e  f a t i g u e  c r a c k  l a y e r  a t  low magni- 

f ica t i o n .  
b - The c r a c k  t i p  r e g i o n .  Ex tens ive  damage is  seen  around 

and i n  f r o n t  of t h e  c r a c k  t i p .  
c - SEM p i c t u r e  of an  element  of damage f r o m t h e  area i n  b 

taken  a t  2 0 , 0 0 0 ~  m a g n i f i c a t i o n .  
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tial features of fracture processes and has served as a solid foundation 

. for many engineering and scientific applications. Following this approach, 

microdefects surrounding the crack are modeled as a plastic zone in a very 

general sense. Such modeling describes the macroscopic deformation and 

stress state reasonably well for plastic metals. It does not, however, 

describe the microstructure of plastic deformation within the "plastic 

zone" (see for example Fig. lb, c). For brittle materials such as ceramics 

and rocks the models of plasticity seem inadequate. 

Recent achievements in materials science challenge the continuum 

approach to model the fracture processes. Obviously the complexity of a 

hierarchy of interacting defects briefly mentioned above is the main 

obstacle. 

In order to simplify the picture we may examine a crack surrounded by 

damage under relatively low magnification (Figs. 2,3,4) [l-31. These 

micrographs have been obtained from various materials: polystyrene (an 

amorphous polymer), polypropylene (a semicrystalline polymer) and stainless 

steel (a polycrystalline metal). The observations [l-31 indicate that 

under similar loading conditions the global geometry and the evolution of 

an array of microdefects surrounding a main crack have many similar 

features for various materials in spite of a l l  the differences in molecular 

structure and morphology. 

Fracture propagation is usually an irreversable process. Hence the 

general framework of the thermodynamics of irreversable processes can be 

employed for modeling the phenomenon. 

A system of a crack and its surrounding damage is referred to as a 

crack layer (CL). The theory of crack layer propagation based on irreversi- 

ble thermodynamics has been proposed in [4,5, 61. Supporting experimental 
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evidences were reported recently (1-3,7,8]. 

. This work gives a comprehensive presentation of crack-layer (CL) as a 

model encompassing essential features of fracture propagation in various 

materials. Relation of the CL model to applied fracture mechanics problems 

is discussed. 

11. Thermodynamics of an Elastic Medium With Damage 

Fracture processes consist of nucleation and growth of microdefects. 

For thermodynamic description of fracture one needs to introduce a list of 

parameters of state by incorporating a damage parameter. To my knowledge, 

L.M. Kachanov was the first one who did it explicitly [ 9 ] .  Since then, 

numerous papers suggesting various damage parameters and constitutive 

equations for them have been published. Summaries of some of the proposed 

damage models can be found in [lO,ll]. Specific interpretation of a damage 

is vitally important for establishing a correspondence between experimental 

studies and a damage model. It is not so important for general thermody- 

namic analysis, which is presented below. However, it is always useful to 

have in mind a particular damage model. Therefore, in this section we 

introduce a damage parameter (P) following [12]. Surfaces supporting the 

discontinuities within an initially continuous solid are considered as the 

elements of damage (microcracks, crazes, shear bands, martensite transfor- 

mation). A damage parameter P is defined as a pairing of scalar damage 

density p (i.e., an area of discontinuity surfaces per unit volume [ P I  = 

and damage orientation parameter 0: P = { P ,  0 ) .  Thus, the following 
2 5) 

system of thermodynamic parameters of state is considered. 
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Here stress tensor 9 and the absolute temperature T constitute a conven- 

.tional for an elastic medium list of parameters of state. This list is 

extended by adding the damage parameter P in order to describe the fracture 

processes. To deduce ‘thermodynamic causes’ of damage we derive the entropy 

production associated with damage. 

The local energy balance can be written as: 

Here 6 stands for the rate of internal energy density, 5 is a strain rate 

tensor, the product represents the rate of work density, 0.J Q gives the 
rate of internal energy density due to heat transfer, (j Q stands for heat 

flux). 

Considering small deformations, we decompose the total strain tensor 

into perfectly elastic (thermodynamically reversible) and nonelastic - 
(irreversible) parts, i .e., 

The work done on nonelastic deformation is spent partially on damage 

and partially by being converted into heat. It can be expressed as 

follows : a 0 : c  *(i) is a part of the irreversible work associated with _ -  
damage nucleation and growth and (1-a)0:;(~) - is converted into heat, (a is 

a phenomenological coefficient). 

Let us consider the left part of equation ( 2 ) .  Conventionally, the in- 

ternal energy density u consists of Helmholtz free energy density f and the 

entropic part Ts: 



u = f + T s  

consequently: 

According to the basic concept of irreversible thermodynamics, the time 

rate of changes of the entropy density can be decomposed into two terms: 

i = i , + s e  , 
where 6 stands for the entropy production due to irreversible processes, i 

and i is the entropy density rate due to exchanges with the surrounding by 

heat and other kinds of energy. In the equilibrial thermodynamics the 

e 

entropy increment As is defined as the ratio: heat/temperature. In non- 

equilibrial thermodynamics the heat exchange with the surrounding is usual- 

ly assumed to be equilibrial. Using this assumption we introduce the 

equilibrial entropy rate 6 in the following form: e 

Here the first term represents the exchange entropy rate due to the entropy 

flux js = jQ, the second term reflects the entropy increases due to the 

heat generated by the irreversible work g:g (i) and the third term reflects 
* - 

the rate of the entropy changes due to the localized transformation of the 

termodynamic state such as cracking, crazing, shear banding, etc. As(g,T,o) 

stands for the difference between the entropies of damaged and undamaged 

matter . 
Since the stress tensor and the absolute temperature constitute the 

conventional part of the list of parameters of state, it is convenient to 

use Gibbs free energy density g. We define g as the difference between 

Helmholtz free energy density and the density of the work done on elastic 



deformation: 

8 

Obviously, 

Substituting ( 3 ) - ( 7 )  into ( 2 ) ,  solving energy balance equation (2) with 

respect to the entropy production ki, and taking into account (9) one an 

find : 

For further transformations, we decompose the rate g into two terms: 

+ G(a,T,P)  - 

where Ag is the difference between the Gib,s free energy Lznsities of 

damaged and undamaged matter and IT is the elastic potential energy density. 

The assumption of local equilibrium yields the following conventional 

consitutive equations: 

, 
P 
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We also make use of conventional relationship between the densities of 

.the enthalpy h, Gibbs free energy g and entropy s in the following way: 

ah . def 
Then substituting (11)-(14) into (10) and having defined 

following expression for the entropy production can be obtained: 

P = Ah; the 

The last term in (15) describes the entropy production due to heat 

transfer which is out of the scope of this paper. In order to concentrate 

attention on the damage process (P), we assume an isothermal condition and 

homogeneity of temperature field (VT - = 0). Under these conditions the 

entropy production (15) reduces to two terms, the first a0 : E(i) $6 in- 

directly associated with damage and therefore is nonzero only within a 

region where P#O. The second term represents the entropy production due to 

damage growth (P) directly. Therefore, 

- 5  

The rate of damage growth P may be considered as a thermodynamic flux. 

is the reciprocal force. The physical interpretation of Then - 
this force can be done using a simple example. If one visualizes the 

damage as a field of microcracks with microcrack density p then the rate of 

the potential energy density n ( c , T , P )  with respect to p is always negative 

1121, i . e .  

a(h  + IT) 
2P 

It means that the contribution of the potential energy density change into 

the thermodynamic forces is always positive. It can be shown for the same 

'See also equations (18) and ( 4 4 ) .  
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conditions that the enthalpy increment Ah as well as the entropy increment 

Asdue to cracking is always positive, i.e., Ah > 0 [12]. Thus, the thermo- 

dynamic force - d(h + '1 reciprocal to the rate of damage P results from 
the competition between the driving (- - an > 0) and the resisting (- ah E < 0) 

parts. 

- 

ap 

a P  

To emphasize the importance of the enthalpy increment for the thermody- 

with namics of failure we introduce the specific enthalphy of damage Y* 

respect to the unit of damage chosen ( p k ) :  

2 

* 
y (a,T,O) 5 d$if Ah(Jrn-*) 

The establishment of a constitutive equation for damage growth P would 

be the most desirable goal. This requires an effort to specify the damage 

parameter P and a wide program of microscopical observation of damage 

evolution under various loading conditions. However, at the present time 

we do not have sufficient experimental data to construct a constitutive 

equation for damage growth on a sound foundation. An attempt to do it, 

although useful, would be just a speculation with many adjustable para- 

meters involved. In addition, for crack propagation studies, integral 

characteristics of damage surrounding the crack rather than details of the 

damage distribution, are important. Therefore, following the spirit of 

thermodynamics we introduce average characteristics of the entire damage 

- zone including the crack (CRACK LAYER) and constitutive equations for the 

crack layer without reference to a constitutive law for local damage (PI. 

Obviously, the constitutive equations for the crack layer could be deduced 

from a constitutive law of local damage. The absence of this law prohibits 

the stated deduction. The crack layer approach presents a valuable 



solution to this problem. 

-111. The Concept of CRACK LAYER 

We consider a system of a crack and the surrounding array of micro- 

defects as one macroscopic entity, crack layer (CL). As an illustrative 

example the trace of fatigue CL propagation in polystyrene 121 is 

Fig. 5. 
Number of Cycles 

I '  2560 2960 3065 3108 3120 3122 3118 E 0 
E I I I I I 

I 1 - 
& 

5 1  
3 0.5 

shown in 

Crack Lengthmm 

Fig. 5 

The vertical markers indicate the positions of the crack tip corresponding 

to various numbers of cycles. The damaged zone expands in a self similar 

fashion. The observation of damage (crazes) in the vicinity of the crack 

tip [2] suggests that the damage distribution appears as a manifestation of 

actual stress field. Consequently, the similarity criteria for damage 

distribution are the same as that for the stress field. 

Formally, a crack layer is described as zone V within which the damage L 
density p is positive, i.e., 

VL = U X l ,  x2):p(x1, x2) > 0 1 ( 1 9 )  

It is worth noting that a certain level of damage could exist independently 

of crack propagation. 

po should be determined. 

In such a case, a level of reference damage density 

The CL is then defined as a zone VL within which 



12 

t h e  damage d e n s i t y  i s  above t h e  r e f e r e n c e  l e v e l .  

To d e s c r i b e  CL Propagat ion ,  we d i s t i n g u i s h  a c t i v e  and i n e r t  zones ( s e e  

F i g .  6)  w i th in  the  CL. I n  a zone a d j a c e n t  t o  t h e  c r a c k  t i p  t h e  damage 

i 

d e n s i t y  keeps grow- 

i n g  u n d e r  t h e  l n f l u -  

ence of stress concen- 

t r a t i o n .  The zone VA,  

- wi th in  which the  dam- = 
1. --*.. 

a g e  d e n s i t y  is above  

%< the r e f e r e n c e  l e v e l  zo 

and t h e  r a t e  of damage 

d e n s i t y  is p o s i t i v e ,  

* is c a l l e d  t h e  a c t i v e  

zone ( s e e  Fig.  6 ) .  

When a crack propagates  through the  a c t i v e  zone t h e  s t r e s s e s  a r e  r e -  
Fig.6 

l ea sed  and consequent ly  t h e  p rocess  of damage growth p r a c t i c a l l y  s t o p s .  

Thus,  t he  i n e r t  zone appears  a s  a t r a c e  of t he  a c t i v e  zone propagat ion .  

The i n e r t  zone V complementary t o  t h e  a c t i v e  zone VA. 

The a c t i v e  zone boundary 3V can be r ep resen ted  a s  c o n s i s t i n g  of t h e  l ead -  

i n g  A -(') and t r a i l i n g  r ( t )  edges ( s e e  F ig .  6 ) .  The t r a i l i n g  edge r ( t )  4 is 

def ined  as  the  border  between the  a c t i v e  and i n e r t  zones.  The l ead ing  edge 

is the  p a r t  of V 1 L 

A 

( t )  is p a r t  of ;V complementary t o  T . 
A c h a r a c t e r i s t i c  width w and l e n g t h  L of t h e  a c t i v e  zone are shown 

and 

A 

a a 
I n  Fig. 6. F u r t h e r ,  f o r  s i m p l i c i t y ,  we c o n s i d e r  t h e  c a s e  when both  wa 

II are sma l l  i n  comparison wi th  t h e  main c r a c k  l e n g t h  I I ,  i.e., a 
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IV. Kinematics of CL Propagation 

. The mechanism of crack layer propagation can generally be described as 

follows. At first, damage nucleates and grows to a critical level at which 

the local instability conditions are met [ 1 2 ] .  Then a crack appears within 

the damage zone. The crack creates a stress concentration which 

intensifies the processes of damage growth. The damage density in front of 

the crack reaches a critical level which leads to a crack extension and so 

on. 

The critical level of damage relates to the stresses through the condi- 

tions of instability [12]. Since the stress distribution in the vicinity 

of a crack has an invarient shape with respect to crack length (the crack 

length just scales the stresses by a stress intensity factor K), the criti- 

cal level of damage is maintained'constant during the crack propagation. 

The crack layer propagation can be visualized as an active zone (damage 

distribution) movement. The latter can be decomposed Into translation and 

rotation as a rigid body and an active zone deformation (i.e. damage dis- 

semination). Considering homogeneous deformation only, one can express the 

rate of the damage parameter P resulting from the active zone movement 

without explicit time dependency in the following form: 

; = v - GtrP + w - g o t p  + s GexpP + 2: - - . ,  gdevp 

He r v, w, 6, d stand for the rates of translation, rota ion, isotropic 

expansion and deviatoric deformation, correspondingly, and gtr, 9 9 

6dev are the operators of translational, rotational, expansional and devia- 

&rot &exp 

toric transformations. 
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V. 

. 

Global  Entropy Product ion  Due t o  Crack Layer Propagat ion  

The g l o b a l  en t ropy  product ion  i s  t h e  i n t e g r a l  over  t h e  e n t i r e  volume of 

a s o l i d  V from t h e  en t ropy  product ion:  

V 

Since t h e  en t ropy  product ion  due t o  damage growth (16 )  i s  nonzero o n l y  

w i t h i n  t h e  a c t i v e  zone, t h e  i n t e g r a l  i n  (22 )  i s  reduced i n t o  the  i n t e g r a l  

over  V S u b s t i t u t i n g  ( 2 1 )  i n t o  (16 )  and i n t e g r a t i n g  we o b t a i n ,  A’ 

Here b i s  t h e  p a r t  of i r r e v e r s i b l e  work w i t h i n  t h e  a c t i v e  zone s p e n t  on 

damage, i .e., 

(24 )  
D = a 19: ,(i) d V  = i(i) + 6 

vA 

(E:g(‘) dV i s  t h e  rate of t h e  t o t a l  work d i s s i p a t e d  w i t h i n  

\ -JQ.ndA. The thermodynamic f o r c e s  

where Q 

V and t h e  r a t e  of h e a t  r a d i a t i o n  Q = 

av dev t r a n s l a t i o n a l  Ztr ,  r o t a t i o n a l  Xrot ,  e x p e n t i o n a l  XexP and d e v i a t o r i c  X 

can be p re sen ted  as fo l lows :  

( i )  = i, 
.y A 

... ... 

P dV 
X r o t  I a(h  + .rr) & r o t  
.., aP -” V 

A 
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vA 

VI. Thermodynamic Forces for the CL - - 

In order to calculate the forces we consider the enthalpic (resisting) 

Let us start with and potential energy release (driving) parts separately. 

the driving parts. 

1. Calculation of the potential energy release rates. The following 

transformation can be applied to the elastic potential energy density 

TI( g,T,P)  using arbitrary operator " E "  and assuming homogeneous temperature 

f leld. 

Theref ore 

Now one can use (30) for various operators. 

(a) The operator of an infinitisimal translation in k-th direction 

(opposit to the active zone advance) is 

Substituting (31) into (30) we obtain 
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Using the constitutive equation (13) (E - - - E i j ) ,  expression (8)  written 

in the following form 71 = f (E , T , P )  - oij cij ( f  

energy), equations of equilibrium in the absence of mass forces: 

aaij 
e e is the elastic strain 

a .  aij = 0 
J 

and the definition of a small deformation 

1 
F. = - (u  + u .) 
i j  2 i , j  j ,I 

the expression within the brackets in (32) can be simplified: 

(33) 

Substituting (35) into (32) and using Green’s theorem we find 

’* d t r  P d V  = J, , K = i,2 
K 

Where J stands for the conventionally used energy release rate with re- 

spect to crack extension in the tangent direction: 
1 
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If one chooses a closed contour r outside of the active zone VA, then the -- 
.Integral (37) is identically equal to zero since the left part of equation 

(36) vanishes (see Fig. 7). The path independency of (37) is direct 

consequence of this statement. Therefore, instead of a V A  = r(t) U T  ( a )  

in (37), one can choose a part- 

ially arbitrary contour r = 

ur* (Fig. 7). The integral 

in (37) is invariant with re- 

spect to an arbitrary path r * 

Fig. 7 

b). The operator of an infinitesimal rotation is 

grot p E associated with rotation of coordinate (38) 1 correction for tensor components 

m u m  $3, + ( 
is the alternating symbol with components equal to + 1 or - 1 where E 

for even and odd permutations of 1, 2, 3 respectively and zero for all 

system spinorial terms. 

k km 

other combinations. 

Substituting (38) into (30) and providing transformations similar to 

that in (35), one can obtain: 

PdV = Lm (39) 

Here L is a pseudovector (m = 3 for 2-D problems) 
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- ( T  n u ] d l  ( 4 0 )  L = f  K v m  1' b K X ! ; f  - x,,'-' 11.u 
I ij J i , K  i ' i  i K 

A 
2 V 

For an isotropic medium the path independency of L remains similar to that 

of Jk for homogeneous medium. Consequently, the partially arbitrary con- 

tour 1 ' =  r(t)Ul* (see Fig. 7) can be used instead of 2 V  

m 

in ( 4 0 ) .  A 

c). The operator of an infinitesimal isotropic expansion is 

Substituting ( 4 1 )  into ( 3 0 )  one can obtain, 

- Jg dCXPPdV - = M 

\'A 

The M-integral ( 4 3 )  possesses the path-invariancy for linear medium only. 

The J L and M integrals represent the potential energy release rates 

with respect to the translation, rotation and isotropic expansion of the 

active zone. In a similar fashion, a second rank tensor N can be intro- 

duced as the potential energy release due to deviatoric deformation of the 

active zone [ 6 ] .  N K C ,  is particularly sensitive to deviations in the 

stress and strain fields near the crack tip. In contrast to J, L and M, N 

does not possess path independency. (See some historical remarks about J ,  L 

and M in the appendix.) 

1 '  3 

KC 

- . .  

Notably, the path independency of J ,  L and M renders their evaluation 

more convenient, it has no physical significance. For instance, for non- 

- .  
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homogeneous, anisotropic and nonlinear medium the equations (37), (40) and 

(43) express the same potential energy rates as discussed above, but the 

integrals are not path independent. 

2. Calculation of the resistance parts of the thermodynamic forces. In 

order to calculate the enthalpic part of the thermodynamic forces one needs 

to specify the damage parameter. We make use of the damage parameter dis- 

cussed in Section 11, i.e. P = { p , 0}, where p is the scalar damage 

density and 0 stands f o r  an average damage orientation. If the orientation 

of an element of the damage (a plane microcrack, for instance) is described 

by a vector attached to the center of the element, then the translation and 

isotropic expansion transform the damage density P only and do not affect 

the orientation 0 . The rotation and the deviatoric deformation affect 
both the damage density and the orientation. 

The change of the enthalpy h due to damage according to ( 7 ) ,  (ll), (14) 

and (18) is given by: 
* * 2 6P = y (a,T,O)bp + p g  60 ap 

(44) 

* 
Here Y is the specific enthalpy of damage introduced in Section 11. The 

general expression (44) can be used to derive the resistance parts of the 

thermodynamic forces. 

(a) Substituting (44), the expression (31) for the operator of trans- 

lations into the first term of (25 )  and keeping in mind that a translation 

affects the damage density only, one can find: 

b *  ah tr - 6K P dV = y aKp dV = 

vA A 
( 4 5 )  

av 
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where R = -1 v nKdr is defined as the translational resistance moment. 

Let us consider a smooth crack trajectory 

(Fig. 8)  and a local Cartesian coordinate 

system with the origin at the crack tip 

and the axes ox directed along the tan- 

gent to the crack trajectory. Then, the 

Fig. 8 crack speed vector v has only one nonzero 

K 
avA 

, 
1 

component v ( v  = 0). Accordingly, only one component of the translational 

resistance moment R is of interest. That is 
1 2  

1 

where n") stands for a unit vector normal to aV which has the positive or 

negative projection on the unit tangent T((n.-r) < 0), respectively (Fig. 5). > 

The path of integration in ( 4 6 )  

(the trailing edge) contains a 
c +  

, T- - singular point (the crack tip) 
!!- 

'0 where the damage density may be 

singular. Thus, we describe the 

Fig. 9 

(t) damage density ?(x2) along r 
as the sum of a singular RE 6(x2) 

r r and regular P (x2> densities, i.e., p(x2) = Ri 6(x2) + 
ly. 

(x2) ,  respective- 

Substituting p ( x 2 )  into ( 4 6 )  and R: is defined as the core of damage. 

integrating we find: 



R1 = [RE + Ri] ( 4 6 a )  

, (b) In a similar fashion substituting ( 4 4 )  and the expression (41) for 

the isotropic expansion operator into the first term of (25) we obtain, 

Here the expansion resistance moment R is defined as: 
I r o  

A 
V L' 

A 

( 4 8 )  - [ xKipnK dT + 1 : dV 
I J 

avA 
In a case when the reference damage density P = 0 the first term on 

0 

the right hand side of ( 4 8 )  can be neglected. Indeed, 

Since x -0 and n2 ..I 0 along the trailing edge ,('I. Therefore, 1 

where < p >  stands for an average over V damage density and A is the area A 
of VA. 

(c) Substituting (44) and the expression ( 3 8 )  for the operator of 

rotation into the first term of (26) we obtain 

Where R and Ro stand for rotational resistance moments. 
m m 
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Assuming that the enthalpicbarrier does not depend on the orientation 

of damage (a reasonable assumption for an isotropic medium) i.e., a* = 0, 

then (49) can be reduced into 
ao 

ah &rot * 
Rm -jz m P d V = -  

For deviatoric deformation of the active zone a similar expression can 

be obtained: 

where 

and & K t  stands for Kroneker's symbol. 

Finally, summarizing the results of this section one can express the CL 

thermodynamic forces in an index form, which is convenient for practical 

application. 

(54) 

(55) 

( 5 6 )  

* rot Xiot = (L3 + Y R ), 

XexP = (M + ykRO), 
* teV = (Nk - y k,R = 1 ~ 2  

It should be noted that the singular damage density R:a(x,) contributes for 

translational resistance R1 only, it produces no effects for Ro,  rot or 

%k.  
VII. Rectilinear Crack Layer Propagation. Single Parameter Model 

To analyze the constitutive laws of crack layer propagation we Start 
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Erom t h e  s i m p l e s t  case when a l l  degrees  of  freedom are f r o z e n  excep t  one. 

We assume t h a t  c r a c k  l a y e r  propagat ion  appea r s  as a t r a n s l a t i o n  of t h e  

a c t i v e  zone a long  a r e c t i l i n e a r  pa th  with n e i t h e r  de fo rma t ion  nor  r o t a t i o n .  

The re fo re ,  3 - 0; 6 = 0; d - = 0 and v2 = 0 ( i n  terms of  the c o o r d i n a t e s  of 

F ig .  8) .  S ince  t h e  crack t r a j e c t o r y  is a r e c t i l i n e a r  v = E where R is t h e  

c r a c k  l eng th .  Using (53)  the g loba l  e n t r o p y  p roduc t ion  (23) can  be rewrit- 

t e n  as fo l lows:  

1 

According to  t h e  second law of thermodynamics, t h e  e n t r o p y  p roduc t ion  

( g l o b a l  as w e l l  as l o c a l )  is nonnegat ive and e q u a l s  z e r o  f o r  r e v e r s i b l e  

processes .  This does  n o t  mean t h a t  t h e  p rocesses  c a u s i n g  n e g a t i v e  e n t r o p y  

p roduc t ion  Si no t  t ake  p l ace  a t  a l l .  Such p rocesses  are w e l l  known in 

chemical  thermodynamics, [ 13,141. The n e g a t i v e  en t ropy  producing p r o c e s s e s  

. 

may occur  i f  some o t h e r  d i s s i p a t i v e  p r o c e s s e s  produce a su fE icFen t  amount 

of en t ropy  t o  make t h e  t o t a l  en t ropy  p roduc t ion  nonnegat ive .  I n  t h i s  case 

t h e  rates of e n t r o p y  consuming processes  are c o n t r o l l e d  by o t h e r  s o u r c e s  O E  

en t ropy  product ion .  The c o n s t i t u t i v e  law can  t h e r e f o r e  be ob ta ined  from 

€ i r s t  p r i n c i p l e s .  Th i s  i s  the  case for  t h e  c r a c k  l a y e r  propagat ion .  

I n  o r d e r  t o  d e r i v e  t h e  law of r e c t i l i n e a r  CL p ropaga t ion ,  we  need t o  

a n a l y z e  t h e  s t a b i l i t y  of t h e  CL. Assuming t h a t  t h e r e  are no o t h e r  s o u r c e s  

of d i s s i p a t i o n  excep t  of CL growth, i .e.,  6 = 0, the g l o b a l  en t ropy  produc- 

t i o n  t a k e s  t h e  form 
* TSflobal = LJ, - y R1) i 

I n  c lass ica l  thermodynamics, t h e  i n s t a b i l i t y  c o n d t t i o n  is the preroga-  
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tive of the second law. There are no disagreements about the criteria of 

sinstability of an equilibrid state. However, it is not so clear what in- 

stability criteria should be accepted for an irreversible process. In this 

study we make use of the "universal criterion of evolution" which has been 

recently proposed and successfully applied to various irreversible process- 

es [14]. Since the entropy production is a bilinear form of thermodynamic 

fluxes j and reciprocal forces : k xk 
i = C jk.\ 

( k )  
( 5 9 )  

the time rate of the entropy production can be naturally decomposed into 

two terms : 

d 9  d .S  dxSi 
i -  J i + -  

d t - -  d t  d t  

dXk d i  x i -  
-. - C j -  

d t  ( k )  k dt and 

The criterion of evolution [14] states that the following inequality 
d i  

< o  x 1  - 
dt - (63) 

always holds true for stable processes. The equality is met for either a 

stationary process or a critical situation when a sudden (uncontrolled) 

transition becomes possible. Analysis of the second variation 6 si is 

necessary to distinguish these cases. 

2. 

Let us apply this criterion to the entropy production due to crack 

layer extension (58)  : 
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5 is Indeed, the crack length II is the only variable, since o is constant. 

constant according to our assumption (there is no deformation of the active 

zone). 

... 

dJ From ( 6 4 )  one can conclude that a j ~  should be < 0 for a stable crack 
growth. 

Two types of crack configuration can be distinguished from the stabili- 

Illustrative ex- ty vLew point: stable (2 < 0) and unstable (3 >O). 
amples of these two distinct types are shown in Fig. 10. 

F2 
n€L 

J =- 1 1 I" 
Fig. 10 

Crack layer exhibits different behavior for stable and unstable configura- 

t ions. 

1) CL propagation in a stable configuration 

For the configuration shown in Fig. 10a the energy release rate J is 
F2 given by E ~ .  Consequently a is always negative, i.e., the configuration 

is always stable. Then, the requirements of the second law (58) is the 

only "controller" of CL propagation. For J - > y % the requirement (58) is 
met and a crack layer is "allowed" to grow with undefined speed i > 0. To 

dk 

* 

specify the speed, we consider stationary CL growth. The condition of 

stationarity, i.e., the equality in (63) yields 
* 

J, = Y R ,  
A A 
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Then, the applied load F controls the crack propagation velocity. Indeed, 

from (65) and constancy of Y R1 one can deduce: 
* 

aJ 2J (J1 = y*R1) + - f  + - i  = 0 d 
E a F  a n  

Substituting J = - F2 into (66) we obtain En R 

The condition (65) is obviously in agreement with the principle of 

minimum entropy production [ 2 1 ] .  
* 

If J < Y R1 the CL growth (i.e. i > 0), consumes entropy (negative 

entropy production). According to the second law, it is possible if the 

dissipation b is sufficient to compensate the negative term R(Jl- y R1). 

Applying the principle of minimum entropy production (the minimal value of 

* 

is zero), we find: si 

fl + i ( J l  -y*R1) = 0 .  

from which 

Summarizing the cases discussed, one can write a general expression for 

a stationary CL propagation in a stable configuration: 

Dissipation controlled 
6 i f  J1 y*R1 process. 

YRR1 - J1 
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2 )  

. For the configuration shown in Fig. 10b the energy release rate J = 

CI, propagation in an unstable configuration __ 

U2,U. U2Tf - Consequently = E is always positive, i.e. the configuration is E 
always unstable. The limitation introduced by the second law prevents the 

crack from avalanche-like propagation, i.e., the crack cannot grow if 

which yields (for R > 0) the following requirements for stable CL growth: 

Therefore, a slow CL propagation, which is compatible with (70) can occur 

due to the dissipative term b only. Therefore, if one accepts the principle 

of minimum entropy production, then equation ( 6 8 )  holds true for an un- 

stable configuration as well as for a stable one. 
* 

When J approaches 7 R the requirement of the second law is met. Then 1 1 
for an unstable configuration the crack propagates avalanche-like if J = 1 

Summarizing the results, one can write: 

i f  J, y*Rl Dissipation controlled .b 
l l =  ' I  YRR1 - J1 process. 

Undefined if J' = y*R1 Transition to the (71) 
dynamic process. 1 

* 
Although both characteristics b and y 5  can be studied using either stable 

or unstable configuration, the first is more convenient for analysis of the 

dissipation b while unstable configuration is preferable for evaluation of 

y*R1. The later can be obtained from the conventional fracture toughness 

(t) test and additional microscopic studies of damage distribution along I' . 
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The rate of dissipation within the active zone b can be experimentally 

‘measured as the difference between the rate of total dissipated work 63 (i) 

and the heat Q radiated (see 2 4 ) .  

3) Example 

Slow CL propagation in unstable configuration (equation 71) is consi- 

dered as an illustrative example. Since, we do not have experimental data 

on heat radiation, we assume that the rate of dissipation b is proportional 

to the dissipated work W . The coefficient of proportionality apparent- 

ly depends on mechanisms of dissipation. One would expect the coefficient 

to be dependent upon strain rate, temperature and a characteristic time of 

the process. An evaluation of the irreversible work W(i) due to an array 

of crazes constituting the CL active zone has been done in (81. The evalua- 

tion is based on a new CL stress analysis [ 1 5 ]  and an experimental CL 

characterization [ 2 ]  These results suggests that W(i) is proportional to 

the product J<d>, where <d> stands for a characteristic size of VA. Thus, 

the rate of dissipation b can be written as follows: 

(i) 

b = B<d>J ( 7 2 )  

-1 Here 6 is a phenomenological coefficient with dimension [ B ]  = sec . At 

fixed temperature B depends on the strain rate. The latter can be 

expressed in terms of the rate of applied load and a dimensionless crack 

propagation rate i/<d> (8 1 .  

Substituting ( 7 2 )  into (71) we obtain 

Undcf ined 

The relationship (73) is 

distinguish three stages 

schematically represented in Fig. 11. One can 

of slow crack propagation in unstable configura- 
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J 

Fig. 11 

tion. The first stage corresponds to crack prcpagation through previously 

damaged material. A new damage 

is not being developed at this 

stage. It means that the re- 

sistance moment R mainly con- 

c sists of the core of damage R1 
which is small in comparison 

1 

with a developed CL resistance 

R1. Therefore, the rate of 

crack acceleration with respect 

1 to the energy release rate J 

is relatively high. This is in- 

dicated by the slope of the 

stage I portion of the curve 

in Fig. 11. 

The second, intermediate, state is characterized by monotonic growth of 

damage accompanied by crack propagation. It is reflected in a monotonic 

(approximately linear) increase of the translational resistance moment R1 

and the characteristic length <d> with increasing of J1. In this case the 

translational driving force X is maintained approximately constant and 

the rate of crack propagation (73)  can be approximated by a power type 

equation R - J ( i . e . ,  

tr 
* 

2 K4). 

The third, subcritical stage of CL propagation is characterized by 

This results deceleration of the resistance moment 5 with respect to J. 
tr in the translational force X1 - fR1 - J approaching zero, which corres- 

ponds to the critical state (the asymptote in Fig. 11). When y R1 - % =  0 
the requirement of the second l a w  (58) is met and instability becomes per- 

* 



30 

missible. Thus, at the end of the third stage a slow crack growth trans- 

forms into uncontrolled (avalanche-like) crack propagation. 
* 

1 - J1 Obviously, the value of J at which the translational force y R 
1 

equals zero corresponds to the critical energy release rate J (or Gc) in 
C 

conventional fracture mechanics, i.e., 
* 

y Rlc J =  
IC 

(74) 

is a parameter which can be experimentally evaluated using fracture 

mechanics. y and R can be measured by materials science methods. Thus, 

(74) suggests a link between the two approaches. It is discussed in more 

Jlc * 
IC 

details in section I X .  

The simple model described above generally predicts the shape of i, vs. 
J curve. However, it does not describe crack deceleration phenomena, 

history dependency of J etc. 

V I I I .  Rectilinear CL Propagation. Two Parameter Model 

1 

C' 

Limitations of the previous model appear due to the employment of a 

single parameter only (the crack length ). A natural way to overcome the 

limitations is to use an additional degree of freedom offered by the CL 

model. Following this idea, we consider crack layer propagation by trans- 

lation along the rectilinear path and isotropic expansion of the active 

zone. v1 = a'; v2 = 0 (recti- 

linearity); w = 0 (no rotation), 6 = 1/2 & + $) (isotropic expansion 
from the crack tip as an origin), d ., = 0 (no deviatoric deformation). 

Similar to the previous case, one can write: 

'a Ra 

The global entropy production,(23) now can be rewritten as follows: 
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The criterion of stability ( 6 3 )  for the crack layer only (ignoring b in 

(75) as we did in the previous example) can be written as follows: 

Since and 6 are independent variables the above expression yields: 

< o  a s  

Using the same argument as in the single parameter model, one can conclude 

that both the expansional (M - y R ) and translational (J1 - y l )  forces 

are always nonpositive for a stable crack layer propagation. Therefore, 

two types of crack layer configurations (stable and unstable) can be dis- 

tinguished. Incorporating the of principle of minimum entropy production 

one can analyze stationary crack layer propagation following the formalism 

used in the single parameter model. 

* * 
0 

The stationary crack layer propagation controlled by dissipation is 

described by the same equation ( 6 8 )  for both stable and unstable configura- 

tion (compare ( 6 9 )  and (71). For this reason, below we consider the dis- 

sipation controlled propagation only. 
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The principle of minimum entropy production for slow CL propagation can 

be expressed in the form: 
* * 

TS:loba1 = b - ( y  R1 - 5) - i ( y  Ro-M) 5 0 (77) 

It implies, that the dissipation b is distributed between two entropy sinks 

associated with two independent degrees of freedom: i and 6 .  As in the 

previous case we assumed the rate of dissipation b to be expressed by ( 7 2 ) .  

In this case two parameters B and B substitute f3 to describe the distri- 

bution of the dissipation between two degrees of freedom. Then (77) yields 
1 2 

Bl<d BJ 
i -  

y*R1 - J1 

B2cd > J 
Y*Ro - M & =  

(79) 

Since the isotropic expansion is the only source for the resistance 

moment changes (it affects only the regular part Rr) one can write 1 

iI = Ri(0)d (80) 
r Accordingly, equation (79) can be converted into an equation for R1 evolu- 

tion using (80): 

d R i  
To analyze the changes of R~ with crack length one can calculate - 

1 dR 
by taking the ratio of (81) and (78): 

dR; Y*R1 - J 
Y*Ro - M - = k R 1  ( 0 )  dll 



is a phenomenological coefficient. It can be shown that J 62 
q' where k = 

i 

* * approaches y R faster than M approaches y R for unstable configuration. 

vanishes when J Equation (82) Therefore - 
1 0 

dRf: * * 
= Y R1 and (Y Ro - M > 0). 1 dll 

r suggests a law of R, evolution. The total translational resistance moment 
& 

R1 = RC + RI (see (46a)) displays a behavior similar to R; due to the con- 1 
stancy of R" 1' 

I 

Fig. 12 

* 
Since y R1 is not a constant in 

the two parameter model, the crack 

growth rate vs. J1 (equation ( 7 6 ) )  

essentially differs from that of the 

single parameter model. The solid 

lines I and I1 in Fig. 12a represent 

the crack growth rate ( i  VS. J) 

according to the single parameter 

model with two different values of 

ly. Evolution of R1 (Fig. 12b) 

yields a transition from the curve I 

t o  the curve I1 (Fig. 12a). Various 

ways of the transition depending on 

R1 evolution are shown by dotted 

lines for monotonic transition and 

dashed line for a transition with 

crack disceleration (Fig. 12). 

Applications of the two para- 

meter model to slow crack layer 
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propagation in unstable configuration of PS sheet under fatigue loading was 

.recently achieved (81. Fig. 13 taken from [ 8 ]  shows a reasonable agreement 

between the theory and the experimental data for more than four order of 

magnitudes in crack growth rate. The two fatigue tests presented in Fig. 13 

were identical except of the values of o . The higher stress yields 

faster crack propagation and shorter fatigue time which was expected. Most 
mean 

important is the fact that the critical value of J (at which avalanche-like 

crack propagation was observed) is much smaller €or  higher stress. Thc. 

micrographs of the cross-section along the trailing edges of the two active 

1 

zones shown in Fig. 13 explain this phenomenon. The lower stress produces 

more dense damage, i.e., larger translational resistance moment which 

consequently leads to larger Jlc. 

IX. Material Toughness Characterization in Two Parameter Model 

The necessary condition of crack layer instability (see sections VI1 

and VIII) is 
* 

J1 = Y Rlc (83 )  

r where R1 = RY + Rl(t) according to (46a). When the sufficient condition of 

aJ instability (- > 0) is met, as it happens for various loading conditions, 
the condition (83 )  expresses the only requirement for the critical state. 

a R  

Following the conventional symbolism we introduce Jlc as a critical 

value of J1. Then using (83 )  and (46a) one can write 

* * C  where the first term Yo = YR1 is a Griffith's type energy associated with 

either the crack surfaces or, in a more general sense, a near surface layer 

of intensive damage (a core of damage). During crack layer growth Y 

assumingly remains constant. The second term describes the loading history 

* 
0 



35 

k 

0 5 10 15 20x10~ 

Energy Release Rate (Jm2) 

b) (1 ) (2) 

Fig.13 

aj Crack growth rates. 
b) Transverse sections along the trailing 

edge at critical CL configuration. 
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0 1 2 3 4 ~ 1 0 ' ~  0 4 8 

dependency of J 
IC 

.the crack growth. 

and is associated with a damage dissimination accompanying 

, L ' x ~ o - ~  

Equation (84) presents J as a linear function of R1 r (Fig. 1 4 ) .  The 
IC slope and the intersect in Fig. 14 

Fig. 14 

STEEL 

JC t 3( 

JC 

2c 

i o  

0 

* * 
gives rise to y and yo, respective- 

ly. As shown in Figs. 15, 16, 17 

the linear J - R I  relationship has 
been demonstrated by the results on 

stainless steel 111, polycarbonate 

IC 

and polystyrene, respectively [7]. 

PC 

Fig. 15 Fig. 16 

8 u X ~ O - ~  4 
0 1 '  ' '  ' '  

0 

Fig. 17 

* 
As it was suggested [12], Y appears to be a constant quantity of the 

same order of magnitude as the latent energy of a phase transition for the 

material considered [1,7]. 

X. Conclusion 

The model described above suggests three independent parameters Y* , 
0 * 

y* and R 1  to characterize material toughness. Two of them Yo and Y" are 

material constants, reflecting the mode of damage (microstructural fea- 
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tures). The third is a history dependent parameter. Therefore, a complete 

toughness characterization requires establishment of the constitutive 

equation for R:. 

The model described is in a good agreement with available experimental 

data. At the same time the limitations of the model are obvious. It does 

not predict the crack trajectory (we assumed a rectilinear path), it does 

not describe the active zone shape changes, observed recently [ 3 ] ,  etc. 

Therefore the necessity of employing the rest of the crack layer degrees of 

freedom is clear. 
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Appendix 

Historical Remarks 

J-integral was first introduced by J. Eshelby in 1951 [161 to express 

the force acting on a singularity within an elastic solid. Later, J-inte- 

gral was rederived independently by J. Sanders in 1960 [17], G. Cherepanov 

in 1967 [18] and J. Rtce in 1968 [19]. The most clear and popular inter- 

pretation of J as the energy release rate with respect to crack length has 

been done by J. Rice. W. Gunter [20] (1962) and later J. Knowles and E. 

Sternbert [21] (1972) applied Noether's theorem to elastostatics and ob- 

tained three path-independent for a linear, homogeneous and isotropic 

medium integrals J, L and M associated with translational, rotational and 

expansional invariances. These integrals express the general conservation 

laws of elastostatics. Shortly after J. Knowles and E. Sternberg' publica- 

tion, the physical interpretation of L and M integrals was discussed by B. 

Budiansky and J. Rice [ 2 2 ] .  The same J, L and M integrals (and additional 

one N) appeared in the crack layer theory as active parts of thermodynamic 

forces reciprocal to crack layer extension rotation, expansion and distor- 

tion ( [ 5 ] ,  [6] (1978)). In recent publication of S .  Aoki, K. Kishimoto and 

M. Sakata (231 a generalization of J, L and M integrals is proposed for 

cases in which plastic deformation, body forces, thermal strains may exist. 

The formalism used in [23] is very similar to that in [5,6]. Path indepen- 

dent integrals for inelastic materials are in details discussed by Stone- 

sifer and Atluri [24]. 
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6. Abstract 

Studies o f  crack p r o  agation and s t a b i l i t y  have developed i n  two main d i rec t i ons :  
mater ia ls  science, w i i ch  concerns s tud ies  o f  t he  h ie rarchy  o f  microdefects, t h e i r  nucleat ion,  i n t e r -  
ac t ion  and development i n  associat ion w i t h  propagation o f  a main crack. Another, based on continuum 
mechanics, considers crack as an i dea l  c u t  i n  an e l a s t i c ,  e l a s t o p l a s t i c  o r  v i s c o e l a s t i c  medium. To 
br idge these approaches we introduce a damage parameter i n  add i t i on  t o  convent ional  parameters o f  
continuum mechanics and consider a crack surrounded by an ar ray  o f  microdefects w i t h i n  the  continuum 
mechanics framework. A system cons is t i ng  o f  t he  main crack and surrounding damage i s  c a l l e d  "crack 
layer." Crack layer  propagation i s  an i r r e v e r s i b l e  process. Hence, the  general framework of the  
thermodynamics of i r r e v e r s i b l e  processes have been employed t o  i d e n t i f y  t h e  d r i v i n g  forces (causes) 
and t o  der ive  the  c o n s t i t u t i v e  equation o f  CL propagation, t h a t  i s ,  t he  r e l a t i o n s h i p  between the  
ra tes  of the  crack growth and damage dissimenat ion from one s ide  and the  conjugated themodynamic 
forces f rom another. The proposed law o f  CL propagation i s  i n  good agreement w i t h  t h e  experimental 
data on fa t igue CL propagation i n  var ious mater ia ls.  The theory a lso  elaborates ma te r ia l  toughness 
charac ter iza t ion .  It proposes the  f o l l o w i n g  r e l a t i o n s h i p  between the  c r i t i c a l  energy release r a t e  
J1c (w ide ly  used as a mater ia l  toughness parameter) and the  damage disseminat ion c h a r a c t e r i s t i c s  
R1 (which i s  c a l l e d  t rans la t i ona l  res is tance moment): 

One r e l a t e d  t o  

* *  
J1c = Y o  + R1 (1) 

* 
Here Yo i s  a G r i f f i t h l s  type energy associated w i t h  e i t h e r  the  crack surfaces or, i n  a more 
general sense, a near surface layer  of i n tens i ve  damage (a  core  o f  damage); Y *  i s  t he  gpec i f i c  
enlhalpy o f  damage. 
Y and R1 r e s u l t s  from the mater ia ls  science technique. Thus, equation (1) suggests a p r a c t i -  

c a l  l i n k  between the  t w o  approaches t o  crack s t a b i l i t y  analysis. 

J ~ c  i s  measured on the  bas is  o f  the  f r a c t u r e  mechanics methods, Yo, 

. 

. 

'For sale by the National Technical Information Service, Springfield, Virginia 22161 


